THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5210 Discrete Mathematics 2017-2018 Suggested Solution to Assignment 3

1. Let p be a prime number and $1 \le \alpha \le p-1$. Show that

$$
L_{\alpha}(\beta_1 \beta_2) \equiv L_{\alpha}(\beta_1) + L_{\alpha}(\beta_2) \qquad \text{(mod ord}_p(\alpha))
$$

where $\mathrm{ord}_p(\alpha)$ is the least positive integer such that $\alpha^{\mathrm{ord}_p(\alpha)} \equiv 1 \pmod{p}$. Ans:

Let $0 \leq y_1, y_2 < \text{ord}_p(\alpha)$ such that $y_1 = L_\alpha(\beta_1)$ and $y_2 = L_\alpha(\beta_2)$. Then, we have $\beta_1 = \alpha^{y_1}$, $\beta_2 = \alpha^{y_2}$ and so $\beta_1 \beta_2 = \alpha^{y_1 + y_2}$.

By the fact that $\alpha^m \equiv \alpha^n \pmod{p}$ implies that $m \equiv n \pmod{\text{ord}_p(\alpha)}$, we have

$$
L_{\alpha}(\beta_1 \beta_2) \equiv y_1 + y_2 \equiv L_{\alpha}(\beta_1) + L_{\alpha}(\beta_2) \quad (\text{mod } \text{ord}_p(\alpha)).
$$

2. Let $p = 1201$. Use the Pohlig-Hellman algorithm to find $L_{11}(2)$.

Ans:

Note $p - 1 = 1200 = 2^4 \times 3 \times 5^2$. Let $x = L_{11}(2)$.

Express $x = x_0 + 2x_1 + 4x_2 + 8x_3 + \cdots$, where $0 \le x_i \le 1$.

$$
11^{x_0+2x_1+4x_2+8x_3+\cdots} \equiv 2 \pmod{1201}
$$

\n
$$
(11^{x_0+2x_1+4x_2+8x_3+\cdots})^{600} \equiv 2^{600} \pmod{1201}
$$

\n
$$
(11^{600})^{x_0} \cdot (11^{1200})^{x_1+2x_2+4x_3+\cdots} \equiv 2^{600} \pmod{1201}
$$

\n
$$
(-1)^{x_0} \equiv 1 \pmod{1201}
$$

\n
$$
\therefore x_0 = 0
$$

Then,

$$
11^{2x_1 + 4x_2 + 8x_3 + \cdots} \equiv 2 \pmod{1201}
$$

\n
$$
(11^{2x_1 + 4x_2 + 8x_3 + \cdots})^{300} \equiv 2^{300} \pmod{1201}
$$

\n
$$
(11^{600})^{x_1} \cdot (11^{1200})^{x_2 + 2x_3 + 4x_4 + \cdots} \equiv 2^{300} \pmod{1201}
$$

\n
$$
(-1)^{x_1} \equiv 1 \pmod{1201}
$$

\n
$$
\therefore x_1 = 0
$$

Then,

$$
11^{4x_2+8x_3+\cdots} \equiv 2 \pmod{1201}
$$

\n
$$
(11^{4x_2+8x_3+\cdots})^{150} \equiv 2^{150} \pmod{1201}
$$

\n
$$
(11^{600})^{x_2} \cdot (11^{1200})^{x_3+2x_4+4x_5+\cdots} \equiv 2^{150} \pmod{1201}
$$

\n
$$
(-1)^{x_2} \equiv -1 \pmod{1201}
$$

\n
$$
\therefore x_2 = 1
$$

Then,

$$
11^{4+8x_3+\cdots} \equiv 2 \pmod{1201}
$$

\n
$$
11^{8x_3+\cdots} \equiv 11^{-4} \times 2 \pmod{1201}
$$

\n
$$
11^{8x_3+\cdots} \equiv 729 \pmod{1201}
$$

\n
$$
(11^{8x_3+\cdots})^{75} \equiv 729^{75} \pmod{1201}
$$

\n
$$
(11^{600})^{x_3} \cdot (11^{1200})^{x_4+2x_5+\cdots} \equiv 729^{75} \pmod{1201}
$$

\n
$$
(-1)^{x_3} \equiv -1 \pmod{1201}
$$

\n
$$
\therefore x_3 = 1
$$

Therefore, $x \equiv 12 \pmod{16}$.

Next, express $x = x_0 + 3x_1 + 9x_2 + 27x_3 + \cdots$, where $0 \le x_i \le 2$.

$$
11^{x_0+3x_1+9x_2+27x_3+\cdots} \equiv 2 \pmod{1201}
$$

\n
$$
(11^{x_0+3x_1+9x_2+27x_3+\cdots})^{400} \equiv 2^{400} \pmod{1201}
$$

\n
$$
(11^{400})^{x_0} \cdot (11^{1200})^{x_1+3x_2+9x_3+\cdots} \equiv 2^{400} \pmod{1201}
$$

\n
$$
(570)^{x_0} \equiv 570 \pmod{1201}
$$

\n
$$
\therefore x_0 = 0
$$

Therefore, $x \equiv 1 \pmod{3}$.

Similarly, express $x = x_0 + 5x_1 + 25x_2 + \cdots$, where $0 \le x_i \le 4$.

$$
11^{x_0+5x_1+25x_2+\cdots} \equiv 2 \pmod{1201}
$$

\n
$$
(11^{x_0+5x_1+25x_2+\cdots})^{240} \equiv 2^{240} \pmod{1201}
$$

\n
$$
(11^{240})^{x_0} \cdot (11^{1200})^{x_1+5x_2+\cdots} \equiv 2^{240} \pmod{1201}
$$

\n
$$
1062^{x_0} \equiv 105 \pmod{1201}
$$

We can compute $1062^0 \equiv 1$, $1062^1 \equiv 1062$, $1062^2 \equiv 105$, $1062^3 \equiv 1018$ and $1062^4 \equiv 216$. Therefore, $x_0 = 2$.

Then,

$$
11^{2+5x_1+\cdots} \equiv 2 \pmod{1201}
$$

\n
$$
11^{5x_1+\cdots} \equiv 11^{-2} \times 2 \pmod{1201}
$$

\n
$$
11^{5x_1+\cdots} \equiv 536 \pmod{1201}
$$

\n
$$
(11^{5x_1+\cdots})^{48} \equiv 536^{48} \pmod{1201}
$$

\n
$$
(11^{240})^{x_1} \cdot (11^{1200})^{x_2+5x_3+\cdots} \equiv 536^{48} \pmod{1201}
$$

\n
$$
1062^{x_1} \equiv 1062 \pmod{1201}
$$

\n
$$
\therefore x_1 = 1
$$

Therefore, $x \equiv 7 \pmod{25}$.

By Chinese remainder theorem, $L_{11}(2) = 1132$.

3. Let $p = 31$. Use the baby step, giant step to find $L_3(14)$.

Ans:

Choose a positive integer N such that $N^2 \ge p - 1 = 30$. Take $N = 6$ and construct the following table:

$$
\begin{array}{ccccccccc} j & 0 & 1 & 2 & 3 & 4 & 5 \\ 3^j\,(\mathrm{mod}\,31) & 1 & 3 & 9 & 27 & 19 & 26 \end{array}
$$

By extended Euclidean algorithm, $3 \times 21 + 31 \times (-2) = 1$ and so $3^{-1} \equiv 21 \pmod{31}$. Then, we construct the following table.

$$
\begin{array}{ccccccccc} & & & & 0 & 1 & 2 & 3 & 4 & 5 \\ & & 14 \times 3^{-6k} \, (\mathrm{mod}\, 31) & 14 & 28 & 25 & 19 & 7 & 14 \end{array}
$$

Therefore, we have

$$
3^5 \equiv 19 \equiv 14 \times 3^{-18} \pmod{31}
$$

\n $3^{23} \equiv 14 \pmod{31}$

Therefore, $L_3(14) = 23$.

4. Let $p = 601$. Use the index calculus to find $L_7(83)$.

(Hint: you may make use the pre-computation step in the lecture notes.)

Ans:

We have $83 \times 7^4 \equiv 352 \equiv 2^6 \times 11 \pmod{601}$.

Therefore,

$$
L_7(83) + 4 \equiv 5L_7(2) + L_7(11) \pmod{600}
$$

\n
$$
L_7(83) \equiv -4 + 5(432) + 157 \pmod{600}
$$

\n
$$
L_7(83) \equiv 513 \pmod{600}
$$

5. Show that an ideal of $\mathbb Z$ must be of the form $n\mathbb Z$, where n is an integer.

Ans:

Let I be an ideal of Z. Suppose that $I = \{0\}$, then $I = 0\mathbb{Z}$.

Now, suppose that I contains an element m other than 0. Then, we claim that I must contain some positive integers.

If m is positive, we are done. Otherwise, we have $-m > 0$ is also an element of I.

Among those positive integers, we let d be the least positive integer such that $d \in I$ and we claim that $I = d\mathbb{Z}$ (i.e. ideal generated by d).

Firstly, $d \in I$ and so $d\mathbb{Z} \subset I$. Suppose that there exists $a \in I\backslash d\mathbb{Z}$. Then, a is not an multiple of d. By Euclidean algorithm, there exist unique integers q and r with $0 < r < d$ ($r \neq 0$ since a is not a multiple of d) such that $a = qd + r$.

Then, we have $0 < r < d$ with $r = a - dq \in I$ which contradicts to the assumption that d is the least positive integer such that $d \in I$.

6. (a) If $p(x) \in \mathbb{R}[x]$ which is not a multiple of $x^2 + 1$, show that $gcd(p(x), x^2 + 1) = 1$.

Ans:

Let $p(x) \in \mathbb{R}[x]$ which is not a multiple of $x^2 + 1$ and $gcd(p(x), x^2 + 1) = d(x)$ where $deg d(x) >$ 0.

Since $d(x)$ is a factor of $x^2 + 1$ and $x^2 + 1$ does not have any linear factor, $d(x)$ can only be $x^2 + 1$. It implies that $x^2 + 1 = d(x)|p(x)$ which is a contradiction.

(b) Show that the ideal $\langle x^2 + 1 \rangle$ (i.e. ideal generated by $x^2 + 1$) is a maximal ideal of $\mathbb{R}[x]$. (Remark: Therefore, $\mathbb{R}[x]/\langle x^2 + 1 \rangle$ is a field.)

Ans:

Let I be an ideal such that $\langle x^2 + 1 \rangle$ is a proper subset of I. Then, there exists a polynomial $p(x) \in I \backslash \langle x^2 + 1 \rangle$, i.e. $p(x)$ is not a multiple of $x^2 + 1$.

By (a), we have $gcd(p(x), x^2 + 1) = 1$. By extended Euclidean algorithm, there exist unique $a(x), b(x) \in \mathbb{R}[x]$ such that $1 = p(x)a(x) + (x^2 + 1)b(x)$.

Since both $p(x)$ and $x^2 + 1$ are in I, we have $1 \in I$ which implies that $I = \mathbb{R}[x]$. Therefore, $\langle x^2 + 1 \rangle$ is a maximal ideal of $\mathbb{R}[x]$.

- 7. Let E be the elliptic curve given by the equation $y^2 \equiv x^3 2 \pmod{7}$.
	- (a) List all the points on the elliptic curve E.

Ans:

The points on E are: $(3, 2)$, $(3, 5)$, $(5, 2)$, $(5, 5)$, $(6, 2)$, $(6, 5)$ and ∞ .

(b) Find $(3, 2) + (5, 5)$ and $2(3, 2)$.

Ans:

 $(3, 2) + (5, 5) = (3, 5)$ and $2(3, 2) = (5, 2)$.

- 8. Let E be the elliptic curve given by the equation $y^2 \equiv x^3 + 2x + 3 \pmod{19}$.
	- (a) Find $(1, 5) + (9, 3)$.

Ans:

 $(1, 5) + (9, 3) = (15, 8)$

(b) Find $(9, 3) + (9, -3)$.

Ans:

 $(9, 3) + (9, -3) = \infty.$

(c) Using the result in (b), find $(1, 5) - (9, 3)$.

Ans:

 $(1, 5) - (9, 3) = (1, 5) + (9, -3) = (10, 4)$

(d) Find an integer k such that $k(1, 5) = (9, 3)$.

Ans:

 $k=5.$

(e) Suppose that the order of $(1, 5)$ is 20, i.e. $n = 20$ is the least positive integer such that $n(1, 5) = \infty$. Show that E has exactly 20 points.

Ans: By Lagrange's theorem, we have $20||E|$. √

By Hasses' theorem, we have $||E| - 20| < 2$ 19.

Therefore, $|E| = 20$ is the only possible integer which satisfies the above two conditions.