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1. Let p be a prime number and 1 ≤ α ≤ p− 1. Show that

Lα(β1β2) ≡ Lα(β1) + Lα(β2) (mod ordp(α))

where ordp(α) is the least positive integer such that αordp(α) ≡ 1 (mod p).

Ans:

Let 0 ≤ y1, y2 < ordp(α) such that y1 = Lα(β1) and y2 = Lα(β2).

Then, we have β1 = αy1 , β2 = αy2 and so β1β2 = αy1+y2 .

By the fact that αm ≡ αn (mod p) implies that m ≡ n (mod ordp(α)), we have

Lα(β1β2) ≡ y1 + y2 ≡ Lα(β1) + Lα(β2) (mod ordp(α)).

2. Let p = 1201. Use the Pohlig-Hellman algorithm to find L11(2).

Ans:

Note p− 1 = 1200 = 24 × 3× 52. Let x = L11(2).

Express x = x0 + 2x1 + 4x2 + 8x3 + · · · , where 0 ≤ xi ≤ 1.

11x0+2x1+4x2+8x3+··· ≡ 2 (mod 1201)(
11x0+2x1+4x2+8x3+···)600 ≡ 2600 (mod 1201)(

11600
)x0 ·

(
111200

)x1+2x2+4x3+··· ≡ 2600 (mod 1201)

(−1)x0 ≡ 1 (mod 1201)

∴ x0 = 0

Then,

112x1+4x2+8x3+··· ≡ 2 (mod 1201)(
112x1+4x2+8x3+···)300 ≡ 2300 (mod 1201)(

11600
)x1 ·

(
111200

)x2+2x3+4x4+··· ≡ 2300 (mod 1201)

(−1)x1 ≡ 1 (mod 1201)

∴ x1 = 0

Then,

114x2+8x3+··· ≡ 2 (mod 1201)(
114x2+8x3+···)150 ≡ 2150 (mod 1201)(

11600
)x2 ·

(
111200

)x3+2x4+4x5+··· ≡ 2150 (mod 1201)

(−1)x2 ≡ −1 (mod 1201)

∴ x2 = 1
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Then,

114+8x3+··· ≡ 2 (mod 1201)

118x3+··· ≡ 11−4 × 2 (mod 1201)

118x3+··· ≡ 729 (mod 1201)(
118x3+···)75 ≡ 72975 (mod 1201)(

11600
)x3 ·

(
111200

)x4+2x5+··· ≡ 72975 (mod 1201)

(−1)x3 ≡ −1 (mod 1201)

∴ x3 = 1

Therefore, x ≡ 12 (mod 16).

Next, express x = x0 + 3x1 + 9x2 + 27x3 + · · · , where 0 ≤ xi ≤ 2.

11x0+3x1+9x2+27x3+··· ≡ 2 (mod 1201)(
11x0+3x1+9x2+27x3+···)400 ≡ 2400 (mod 1201)(

11400
)x0 ·

(
111200

)x1+3x2+9x3+··· ≡ 2400 (mod 1201)

(570)x0 ≡ 570 (mod 1201)

∴ x0 = 0

Therefore, x ≡ 1 (mod 3).

Similarly, express x = x0 + 5x1 + 25x2 + · · · , where 0 ≤ xi ≤ 4.

11x0+5x1+25x2+··· ≡ 2 (mod 1201)(
11x0+5x1+25x2+···)240 ≡ 2240 (mod 1201)(

11240
)x0 ·

(
111200

)x1+5x2+··· ≡ 2240 (mod 1201)

1062x0 ≡ 105 (mod 1201)

We can compute 10620 ≡ 1, 10621 ≡ 1062, 10622 ≡ 105, 10623 ≡ 1018 and 10624 ≡ 216.

Therefore, x0 = 2.

Then,

112+5x1+··· ≡ 2 (mod 1201)

115x1+··· ≡ 11−2 × 2 (mod 1201)

115x1+··· ≡ 536 (mod 1201)(
115x1+···)48 ≡ 53648 (mod 1201)(

11240
)x1 ·

(
111200

)x2+5x3+··· ≡ 53648 (mod 1201)

1062x1 ≡ 1062 (mod 1201)

∴ x1 = 1
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Therefore, x ≡ 7 (mod 25).

By Chinese remainder theorem, L11(2) = 1132.

3. Let p = 31. Use the baby step, giant step to find L3(14).

Ans:

Choose a positive integer N such that N2 ≥ p− 1 = 30. Take N = 6 and construct the following

table:
j 0 1 2 3 4 5

3j (mod 31) 1 3 9 27 19 26

By extended Euclidean algorithm, 3 × 21 + 31 × (−2) = 1 and so 3−1 ≡ 21(mod 31). Then, we

construct the following table.

k 0 1 2 3 4 5

14× 3−6k (mod 31) 14 28 25 19 7 14

Therefore, we have

35 ≡ 19 ≡ 14× 3−18 (mod 31)

323 ≡ 14 (mod 31)

Therefore, L3(14) = 23.

4. Let p = 601. Use the index calculus to find L7(83).

(Hint: you may make use the pre-computation step in the lecture notes.)

Ans:

We have 83× 74 ≡ 352 ≡ 26 × 11 (mod 601).

Therefore,

L7(83) + 4 ≡ 5L7(2) + L7(11) (mod 600)

L7(83) ≡ −4 + 5(432) + 157 (mod 600)

L7(83) ≡ 513 (mod 600)

5. Show that an ideal of Z must be of the form nZ, where n is an integer.

Ans:

Let I be an ideal of Z. Suppose that I = {0}, then I = 0Z.

Now, suppose that I contains an element m other than 0. Then, we claim that I must contain

some positive integers.

If m is positive, we are done. Otherwise, we have −m > 0 is also an element of I.

Among those positive integers, we let d be the least positive integer such that d ∈ I and we claim

that I = dZ (i.e. ideal generated by d).
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Firstly, d ∈ I and so dZ ⊂ I. Suppose that there exists a ∈ I\dZ. Then, a is not an multiple of d.

By Euclidean algorithm, there exist unique integers q and r with 0 < r < d (r 6= 0 since a is not a

multiple of d) such that a = qd+ r.

Then, we have 0 < r < d with r = a − dq ∈ I which contradicts to the assumption that d is the

least positive integer such that d ∈ I.

6. (a) If p(x) ∈ R[x] which is not a multiple of x2 + 1, show that gcd(p(x), x2 + 1) = 1.

Ans:

Let p(x) ∈ R[x] which is not a multiple of x2+1 and gcd(p(x), x2+1) = d(x) where deg d(x) >

0.

Since d(x) is a factor of x2 + 1 and x2 + 1 does not have any linear factor, d(x) can only be

x2 + 1. It implies that x2 + 1 = d(x)|p(x) which is a contradiction.

(b) Show that the ideal 〈x2 + 1〉 (i.e. ideal generated by x2 + 1) is a maximal ideal of R[x].

(Remark: Therefore, R[x]/〈x2 + 1〉 is a field.)

Ans:

Let I be an ideal such that 〈x2 + 1〉 is a proper subset of I. Then, there exists a polynomial

p(x) ∈ I\〈x2 + 1〉, i.e. p(x) is not a multiple of x2 + 1.

By (a), we have gcd(p(x), x2 + 1) = 1. By extended Euclidean algorithm, there exist unique

a(x), b(x) ∈ R[x] such that 1 = p(x)a(x) + (x2 + 1)b(x).

Since both p(x) and x2 + 1 are in I, we have 1 ∈ I which implies that I = R[x]. Therefore,

〈x2 + 1〉 is a maximal ideal of R[x].

7. Let E be the elliptic curve given by the equation y2 ≡ x3 − 2 (mod 7).

(a) List all the points on the elliptic curve E.

Ans:

The points on E are: (3, 2), (3, 5), (5, 2), (5, 5), (6, 2), (6, 5) and ∞.

(b) Find (3, 2) + (5, 5) and 2(3, 2).

Ans:

(3, 2) + (5, 5) = (3, 5) and 2(3, 2) = (5, 2).

8. Let E be the elliptic curve given by the equation y2 ≡ x3 + 2x+ 3 (mod 19).

(a) Find (1, 5) + (9, 3).

Ans:

(1, 5) + (9, 3) = (15, 8)

(b) Find (9, 3) + (9,−3).

Ans:

(9, 3) + (9,−3) =∞.

(c) Using the result in (b), find (1, 5)− (9, 3).

Ans:

(1, 5)− (9, 3) = (1, 5) + (9,−3) = (10, 4)
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(d) Find an integer k such that k(1, 5) = (9, 3).

Ans:

k = 5.

(e) Suppose that the order of (1, 5) is 20, i.e. n = 20 is the least positive integer such that

n(1, 5) =∞. Show that E has exactly 20 points.

Ans: By Lagrange’s theorem, we have 20||E|.

By Hasses’ theorem, we have ||E| − 20| < 2
√

19.

Therefore, |E| = 20 is the only possible integer which satisfies the above two conditions.
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